UNITED STATES ENVIRONMENTAL PROTECTION AGENCY #### **REGION 4** Science and Ecosystem Support Division 980 College Station Road Athens, Georgia 30605-2720 March 3, 2004 | ስነ ኖ ሮ | GE KOME | |---------------|-----------| | SITE: | 5 61 1/12 | | BREAK: . | BILES VI | | OTHER: . | | 4-SESD-EAB **MEMORANDUM** SUBJECT: Coosa River Water Sampling Investigation Report, SESD Project No. 03-1068 and No. 04-0048 FROM: Laura McGrath, Environmental Engineer LOM Ecological Evaluation Section Ecological Assessment Branch Science and Ecosystem Support Division THRU: Bill Cosgrove, Chief Ecological Evaluation Section Ecological Assessment Branch Science and Ecosystem Support Division TO: Jim Kutzman Water Management Division Attached is the report for the subject sampling investigation. If you have any questions, please phone me at (706) 355-8776. #### Attachment cc: Carol Monell, WMD / Wes Hardegree, WMD Kay Wischkaemper, WMD Jim Webster, WMD Gail Mitchell, WMD Bill Melville, WMD Wilda Cobb, EAD Nadine Orell, EAD Bill Cosgrove, SESD, EAB Bill Bokey, SESD, EAB 10411136 50 # COOSA RIVER PCB WATER SAMPLING INVESTIGATION REPORT MARCH 2004 03-1068, 04-0048 U.S. EPA, Region 4 Science and Ecosystem Support Division Ecological Assessment Branch 980 College Station Road Athens, Georgia 30605 ## **Table of Contents** | Dis | stribution List | iii | |----------|---|----------| | 1.0 | Introduction | 4 | | 2.0 | Objective | 4 | | 3.0 | Study Area | 7 | | 4.0 | Study Methods | 8 | | 5.0 | Results and Discussion | 9 | | 6.0 | Data Management | 12 | | • | 6.1 Documentation and Records | | | 7.0 | Conclusions | 14 | | 8.0 | Literature Cited | 14 | | | | | | Lis | t of Figures | | | 2. | General Electric Plant Location | 6 | | Lis | t of Tables | | | 2.
3. | Sample Station Locations Total PCB Concentrations Tributary and River Flow Rates Quality Control Samples | 11
12 | | Lis | t of Appendices | | | | pendix A: <i>In situ</i> Water Quality Parameters | 16
28 | #### **Distribution List** Jim Kutzman Waste Management Division Carol Monell South Site Management Branch, Waste Management Division Wes Hardegree South Site Management Branch, Waste Management Division Kay Wischkaemper Office of Technical Services, Waste Management Division Jim Webster Emergency Response and Removal Branch, Waste Managment Division Gail Mitchell Standards, Monitoring, and TMDL Branch, Water Management Division Bill Melville West Standards, Monitoring, and TMDL Section, Water Management Division Wilda Cobb Environmental Accountability Division Nadine Orell Environmental Accountability Division Bill Cosgrove Ecological Assessment Branch, Science and Ecosystem Support Division Bill Bokey Ecological Assessment Branch, Science and Ecosystem Support Division #### 1.0 Introduction The U.S. Environmental Protection Agency (EPA), Region 4, Waste Management Division (WD), South Site Management Branch, requested that the Region 4, Science and Ecosystem Support Division (SESD) collect water samples from the Coosa River near Rome, Georgia and three of its tributaries, Horseleg Creek, Little Dry Creek, and the South Branch of Little Dry Creek to determine if polychlorinated biphenlys (PCBs) were present in the water column. Sediment and fish tissue samples were collected from the Coosa River by SESD in November 2002. The results of that sampling effort showed concentrations of PCBs in the fish tissue that exceeded Georgia Environmental Protection Division (GA EPD) consumption guidelines (EPA 2003a). The sediment samples did not show significant levels of PCBs, particularly in the top six-inches, which is generally considered critical for exposure for trophic level 3 fish and macroinvertebrate organisms involved in food web dynamics. PCB contamination has been documented at and around the General Electric (GE) Plant in Rome, Georgia (Blasland, Bouck, and Lee, Inc. 2000). The plant is located approximately 2 miles northwest of the Coosa River (Figure 1). The GE Plant is the most likely source of PCBs in the surface waters in question (Blasland, Bouck, and Lee, Inc. 2000). Historically, GE had discharged wastewater and stormwater to the three previously mentioned tributaries. GE opened the Rome, Georgia plant in 1952 and produced a variety of medium-capacity electrical transformers. The production of electrical transformers utilized materials such as mineral oil, silicone fluid or askarel dielectric fluid designs. Askarel dielectric fluids are used as insulating fluids for electrical transformers. Dielectric fluids are composed of a combination of various chlorinated benzenes and PCBs. The trade name for GE's askarel dielectric fluid was Pyranol. (EPA 2001) PCBs were used in the manufacture of transformers at the Rome, Georgia plant from 1953 until 1977. Prior to 1968, GE discharged all stormwater from the facility directly into four unlined ditches that discharged into either Little Dry Creek or Horseleg Creek. In 1968, GE installed oil/water separators on three of the ditches to remove potential PCB contaminated oils from the stormwater. A National Pollutant Discharge Elimination System (NPDES) permit was issued to GE for the four stormwater outfalls in 1975. Figure 2 shows the approximate locations of the ditches and their discharge points into the creeks. Outfalls 001 and 003 were located on the southwest corner of the plant and discharged into Horseleg Creek which after three miles flows into the Coosa River. Outfall 002 was located to the north of the plant and discharged into Little Dry Creek, which flows into the Oostanaula River. Outfall 004 was located on the eastern side of the plant and discharged into the South Branch of Little Dry Creek, a tributary to Little Dry Creek. In 1990, Outfalls 001 and 003 were combined and routed to an on-site treatment facility. In 1994, Outfall 004 was also routed to the treatment facility. Since 1994, the treated water has been discharged through permitted Outfall 003 into Horseleg Creek. #### 2.0 Objective The objective of this sampling investigation was to determine if PCBs were present in the water column in the tributaries to the Oostanaula, Etowah and Coosa Rivers and the rivers themselves, thus providing a potential exposure pathway for the fish. #### 3.0 Study Area #### South Branch Little Dry Creek The South Branch Little Dry Creek is an intermittent stream that originates near the southwest end of the GE property. The creek flows east through a residential area along the southern edge of the GE property and eventually into Little Dry Creek. The creek was accessed off of Charlton Street in the city sewer right-of-way behind the Wesley Southern Methodist Church and Tolbert Park. The sample intake was approximately 100 yards upstream of the confluence with Little Dry Creek. The intake was placed at mid-stream and mid-depth. The creek was approximately 12 feet wide and the water depth was approximately 8 inches. Stream gaging was conducted 25 yards downstream of the sample intake point. The total volume of water pumped through the sampler for the sample collected at LDC1 was 1,004 liters. #### Little Dry Creek Little Dry Creek flows east approximately one mile north of the GE Plant. The stream meanders to the south for two miles after it passes the Central of Georgia Railroad and again flows east for 1 mile until it reaches the Oostanaula River. The sample station was accessed from Timothy Avenue. The sample intake point was 100 yards downstream of the confluence of the South Branch Little Dry Creek and Little Dry Creek. The stream was approximately 10 feet wide and the water depth was 0.5 feet. The intake was placed at mid-stream and mid-depth. Stream gaging was conducted approximately 20 yards downstream of the sample intake point. The total volume of water pumped through the sampler for the samples collected at LDC2 was 1,001 liters. #### Horseleg Creek Horseleg Creek originates in Camps Lake which is southwest of the GE property. Horseleg Creek generally flows in an easterly direction. Near Anders Road, the creek meanders to the north near West End School, then south and eventually southeast at Burnett Road until it reaches the Coosa River. The sample was collected downstream of the Hank Street crossing. The location was accessed from a city sewer right-of-way along the southern bank of the creek. The creek was approximately one foot deep and 20 feet wide. Stream gaging was conducted 30 yards downstream of the sample intake point. The total volume of water pumped through the sampler for the sample collected from Horseleg Creek was 1,001 liters. #### **Etowah River** The Etowah River flows east from Lake Allatoona in Cartersville, Georgia for approximately 48 river miles to Rome, Georgia. The Etowah River sample, ER, was collected from a boat. The boat was anchored with the bow facing into the current and the intake line for the sampler was secured from the bow. The total water depth was approximately eight feet and the intake was placed four feet from the surface. Due to excessive clogging of pre-filters in the intake line which slowed the pump rate, sampling was conducted over a two day period in order to reach the target volume of 1,000 liters. A total of 1,093 liters were pumped. #### 3.0 Study Area #### South Branch Little Dry Creek The South Branch Little Dry Creek is an intermittent stream that originates near the southwest end of the GE property. The creek flows east through a residential area along the southern edge of the GE property and eventually into Little Dry Creek. The creek was accessed off of Charlton Street in the city sewer right-of-way behind the Wesley Southern Methodist Church and Tolbert Park. The sample intake was approximately 100 yards upstream of the confluence with Little Dry Creek. The intake was placed at mid-stream and mid-depth. The creek was approximately 12 feet wide
and the water depth was approximately 8 inches. Stream gaging was conducted 25 yards downstream of the sample intake point. The total volume of water pumped through the sampler for the sample collected at LDC1 was 1,004 liters. #### Little Dry Creek Little Dry Creek flows east approximately one mile north of the GE Plant. The stream meanders to the south for two miles after it passes the Central of Georgia Railroad and again flows east for 1 mile until it reaches the Oostanaula River. The sample station was accessed from Timothy Avenue. The sample intake point was 100 yards downstream of the confluence of the South Branch Little Dry Creek and Little Dry Creek. The stream was approximately 10 feet wide and the water depth was 0.5 feet. The intake was placed at mid-stream and mid-depth. Stream gaging was conducted approximately 20 yards downstream of the sample intake point. The total volume of water pumped through the sampler for the samples collected at LDC2 was 1,001 liters. #### Horseleg Creek Horseleg Creek originates in Camps Lake which is southwest of the GE property. Horseleg Creek generally flows in an easterly direction. Near Anders Road, the creek meanders to the north near West End School, then south and eventually southeast at Burnett Road until it reaches the Coosa River. The sample was collected downstream of the Hank Street crossing. The location was accessed from a city sewer right-of-way along the southern bank of the creek. The creek was approximately one foot deep and 20 feet wide. Stream gaging was conducted 30 yards downstream of the sample intake point. The total volume of water pumped through the sampler for the sample collected from Horseleg Creek was 1,001 liters. #### **Etowah River** The Etowah River flows east from Lake Allatoona in Cartersville, Georgia for approximately 48 river miles to Rome, Georgia. The Etowah River sample, ER, was collected from a boat. The boat was anchored with the bow facing into the current and the intake line for the sampler was secured from the bow. The total water depth was approximately eight feet and the intake was placed four feet from the surface. Due to excessive clogging of pre-filters in the intake line which slowed the pump rate, sampling was conducted over a two day period in order to reach the target volume of 1,000 liters. A total of 1,093 liters were pumped. #### Oostanaula River The Oostanaula River is formed by the convergence of the Conasauga and Coosawattee Rivers north of Calhoun, Georgia. The Oostanaula River flows southeast for approximately 49 river miles before it reaches Rome, Georgia. The Oostanaula River sample, OR, was collected from a boat. The intake was secured from the bow, with the bow facing into the current. The total depth was 12 feet and the intake was placed six feet below the surface. A total volume of 952 liters was pumped through the sampler. #### Coosa River The Coosa River forms near downtown Rome, Georgia where the Oostanaula and Etowah Rivers converge. The Coosa River flows west from Rome to the Georgia/Alabama state line. Sample CR was collected downstream of the mouth of Horseleg Creek. The sample intake was secured from the bow of the boat and the boat was anchored into the current. The total depth was 11 feet. The intake was placed at approximately 5.5 feet below the water surface. A total volume of 821 liters was pumped through the sampler. #### 4.0 Study Methods The study was conducted in two phases. Phase one consisted of sampling the tributaries and was conducted during the week of 09/22/03. Phase two consisted of sampling the rivers and was conducted during the week of 10/21/03. A total of six samples were collected from the locations listed in Table 1. Table 1 Sample Station Locations Coosa River PCB Water Sampling Investigation Rome, Georgia September/October 2003 03-1068, 04-0048 | Station | Location | GPS Coordinates | |---------|-------------------------------|-----------------------------| | LDC1 | South Branch Little Dry Creek | N 34° 16.138' W 85° 11.492' | | LDC2 | Little Dry Creek | N 34° 16.222' W 85° 11.385' | | HLC1 | Horseleg Creek | N 34° 15.571' W 85° 12.061' | | ER | Etowah River | N 34° 14.757' W 85° 10.382' | | OR | Oostanaula River | N 34° 16.459' W 85° 10.253' | | CR | Coosa River | N 34° 14.568' W 85° 11.547' | Figure 3 shows the sample locations in relation to the GE Plant. The locations on the Oostanaula River and the Etowah River served as controls to determine if PCBs were present in the water column upstream of the targeted reaches for this study. The dissolved and particulate fractions of the water column were sampled and analyzed separately at each station. This was accomplished using an Infiltrex 300® trace organic sampler. All samples were analyzed for 209 PCB congeners using EPA Method 1668A (high-resolution mass spectrometer). Continuous recording multi-probe sondes (YSI 6920) were deployed at each station throughout the duration of the sample collection period. The sondes recorded measurements of dissolved oxygen, pH, temperature, conductivity, turbidity, and depth at 15 minute intervals. This data is presented in Appendix A. At the time of sample collection, GE was conducting removal operations along the banks of Little Dry Creek and Horseleg Creek. The sample stations on Little Dry Creek and Horseleg Creek were located upstream of the removal areas in order to eliminate the possibility of these operations impacting the sample results. The tributary samples were collected in the following order: South Branch Little Dry Creek, Little Dry Creek and Horseleg Creek. The locations were selected based on what was anticipated to be least contaminated to most contaminated. The lowest concentrations were detected in Horseleg Creek, then Little Dry Creek. South Branch Little Dry Creek had the highest total PCB concentrations. It should be noted that approximately 1.62 inches of rainfall was recorded in the Rome, Georgia area on Monday, September 22, 2003 prior to commencement of sampling on Tuesday, September 23, 2003. It is possible that the results were influenced by contaminants delivered to the surface waters via groundwater infiltration or runoff from the adjacent flood plains. However, the rainfall and subsequent runoff did not result in conditions that were incompatible with the study objective to determine if PCBs were present in the subject surface waters. Further study would be required to determine if the PCB concentrations observed in the tributaries were influenced by groundwater and particularly from groundwater in the vicinity of the GE property. #### 5.0 Results and Discussion Manufactured PCBs are mixtures of congeners of the PCB molecule that differ in their chlorine content. Most PCBs were commercially produced in the United States as standard mixtures bearing the brand name Aroclor (Rushneck, et al). Although their chemical properties vary, different mixtures have many common PCB congeners. PCBs also occur as mixtures of congeners in the environment but their composition differs from the commercial mixtures. This is because after release into the environment, the composition of PCB mixtures changes over time, through partitioning, chemical transformation and preferential bioaccumulation of certain congeners (EPA 1998). Due to the potential for changes in composition of PCB mixtures that occur in the environment, the samples were analyzed for individual congeners using Method 1668A (EPA 1999). The congener, total Aroclor and homologue results are presented in Appendix B. Total Aroclor values were calculated based on the congener results (Axys Analytical Services, Ltd 2003). Total PCB values based on the calculated aroclor results are in Table 2. Total PCB values are used for the basis of the discussion of the results in this report. # Table 2 Total PCB Concentrations Coosa River PCB Water Sampling Investigation Rome, Georgia September/October 2003 03-1068, 04-0048 | Station | Location | Calculated Total
PCB Concentration
Dissolved Phase*
(µg/l) | Calculated Total PCB
Concentration
Particulate Phase
(µg/l) | Calculated Total
PCB
Concentration
Dissolved and
Particulate
(µg/l) | |---------|----------------------------------|---|--|--| | LDC1 | South Branch
Little Dry Creek | 0.173 | 0.0247 | 0.1977 | | LDC2 | Little Dry Creek | 0.149 | 0.0069 | 0:1559 | | HLC1 | Horseleg Creek | 0.0735 | 0.0039 | 0.0774 - | | ER | Etowah River | 0.000120 | 0.000170 | 0.00029 | | OR | Oostanaula
River | 0.000120 | 0.000160 | 0.00028 | | CR | Coosa River | 0.000170 | 0.000240 | 0.00041 | ^{*}Dissolved phase = <1 micron based on pore size of glass fiber filter. Exceeds EPA water quality criteria continuous concentration (EPA 2002) of 0.014 μ g/l and the EPA human health criteria (EPA 2002) of 0.000064 μ g/l Exceeds EPA human health criteria of 0.000064 µg/l (EPA 2002) The total PCB concentrations from all of the tributaries and rivers exceeded EPA's human health water quality criteria of $0.000064 \,\mu\text{g/l}$ (EPA 2002). All of the tributary samples exceeded EPA's continuous concentration water quality criteria of $0.014 \,\mu\text{g/l}$ in the dissolved phase samples (EPA 2002). Significant concentrations of PCBs were detected in the dissolved phase in all of the tributary samples. The concentrations detected in the particulate phase of the tributary samples were also elevated, but not as extensively as the dissolved phase samples. The PCB concentrations in the dissolved phase tributary samples were two to three orders of magnitude higher than the concentrations detected in the dissolved phase river samples. Additional information regarding the source(s) of PCBs in the rivers would be needed to fully understand the
differences in concentrations between the rivers and tributaries. However, the increased volume of water in the rivers may cause dilution of the concentrations of PCBs introduced from the tributaries or other sources. Table 3 contains the flow rates for the tributary and river stations on the days that sampling was conducted. The tributary flow rates were measured periodically throughout the duration of sample collection using a vertical-axis mounted Price pygmy meter. The values reported in Table 3 are averages. The flows for the rivers were obtained from United States Geological Survey gaging stations nearest to the sample locations (Stamey, unpublished data). # Table 3 Tributary and River Flow rates Coosa River PCB Water Sampling Investigation Rome, Georgia September/October 2003 03-1068, 04-0048 | Station | Date | Average Flow (cfs) | | | |---------|---------------------|--------------------|--|--| | LDC1 | 09/23/03 | 0.15 | | | | LDC2 | 09/24/03 | 0.11 | | | | HLC1 | 09/25/03 | 1.04 | | | | ER | 10/21/03 & 10/22/03 | 2500 | | | | OR | 10/23/03 | 1980 | | | | CR | 10/24/03 | 5350 | | | Similar concentrations of PCBs were detected in the samples from the control stations on the Oostanaula and Etowah Rivers and in the downstream location, the Coosa River. The concentrations in the control samples were within approximately 30 percent of the downstream station. This difference may not be significant because the analytical method has a similar degree of precision. Additional data is needed to determine background concentrations of PCBs in the water column. #### 6.0 Data Management #### 6.1 Documentation and Records All field activities were documented in bound logbooks. Upon completion of sampling activities, all documents, records and electronic files generated during the field investigation were processed, labeled, and maintained by the project leader during preparation of the report. Upon completion and transmittal of the report to the appropriate parties, project records were submitted to the SESD Records Room. Access to the analytical results for this project are available to EPA personnel through the Region 4 Laboratory Information Management System (R4LIMS). ### 6.2 Quality Assurance and Quality Control Infiltrex 300® trace organic sampler collection and decontamination procedures were outlined in Appendix B of the Coosa River PCB Water Sampling Investigation Quality Assurance Project Plan (EPA 2003b). The following quality control samples were collected during this study to validate the procedures used to collect the samples and decontaminate the equipment. Table 4 Quality Control Samples Coosa River Water Sampling Investigation September/October 2003 Rome, Georgia | Date/T | ime | Sample | Station | Mass of
PCBs
(pg) | Volume
of
Sample
(L) | Concentration
(pg/l) | |----------|------|--------|-------------------------------------|-------------------------|-------------------------------|-------------------------| | 09/19/03 | 0940 | QA-OW1 | Organic free
water blank | 37 | 0.973 | 38 | | 09/19/03 | 1005 | QA-EB1 | Equipment
Rinse Blank | 229 | 0.917 | . 250 | | 09/23/03 | 0953 | LDC1-D | South
Branch Little
Dry Creek | 190,000,000 | 1,004 | 190,000 | | 09/24/03 | 0850 | LDC2-D | Little Dry
Creek | 150,000,000 | 1,001 | 150,000 | | 09/25/03 | 0735 | QA-EB2 | Equipment
Rinse Blank | 1000 | 1.01 | 990 | | 09/25/03 | 0820 | HLC1-D | Horseleg
Creek | 74,000,000 | 1,001 | 74,000 | | 10/21/03 | 1050 | ER-D | Etowah River | 131,172 | 1,093 | 120 | | 10/22/03 | 2015 | QA-EB3 | Equipment
Rinse Blank | 84 | 0.981 | 86 | | 10/23/03 | 0903 | OR-D | Oostanaula
River | 114,252 | 952 | 120 | | 10/24/03 | 0858 | CR-D | Coosa River | 139,536 | 821 | 170 | | 10/27/03 | 1120 | QA-EB4 | Eaquipment
Rinse Blank | 136 | 0.974 | 140 | The mass of total PCBs detected in the quality control samples in picograms (pg) is insignificant when compared to the mass detected in the environmental samples. All samples were handled in accordance to the procedures outlined in the <u>Ecological Assessment Standard Operating Procedures and Quality Assurance Manual</u>, January 2002. All equipment was calibrated according to the manufacturer's recommendations. Calibration was performed at the beginning of each deployment and checked against known standards upon retrieval. Analytical results were validated and verified by the U.S. EPA, Region 4, SESD, Office of Quality Assurance and Data Integration. #### 7.0 Conclusions Based on the results of the tributary samples, there is a source or sources present which are contributing PCB contamination to the water column at levels significantly higher than EPA's water quality criteria for total PCBs. Because the tributaries flow into the Oostanaula and Coosa Rivers, this source is a potential pathway of exposure for fish in the rivers. Further study would be needed to determine the source(s) of the contamination, the significance of the source(s) and the influence of the ongoing remediation activities on water column PCB concentrations. Based on the results of the river samples, PCBs are present in the water column. Although an upward trend in total PCBs was observed from the control locations to downstream in the Coosa River, the data from this investigation is not conclusive concerning a significant increase in PCB levels downstream of the mouths of the tributaries. Samples collected at the mouths' of the tributaries may be helpful in determining the PCB contribution from the tributaries to the rivers. #### 8.0 Literature Cited Axys Analytical Services, Ltd. 2003. *MLA-010 Analytical Method for the Determination of: 209 Congeners by EPA Method 1668A*, Rev. 5. Axys Analytical Services, Ltd. Sydney, British Columbia. Blasland, Bouck, and Lee, Inc. 2000. RCRA Facility Investigation Phase 2 Report, General Electric, Rome, Georgia. Blasland, Bouck, and Lee, Inc., Cary, North Carolina. EPA. 1998. Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants; States' Compliance - Revision of Polychlorinated Biphenyls (PCBs) Criteria. Federal Register 63:16182-16188. . EPA. 1999. Method 1668, Revision A: Chlorinated Biphenly Congeners in Water, Soil, Sediment, and Tissue by HRGC/HRMS, EPA821-R-00-002. Washington, D.C. EPA. 2001. Final Expanded Site Inspection Report: General Electric Company, Rome, Floyd County, Georgia. U.S. Environmental Protection Agency, Atlanta, Georgia. EPA. 2002. *National Recommended Water Quality Criteria: 2002.* U.S. Environmental Protection Agency. EPA-822-R-02-047. Washington, D.C. EPA 2003a. Coosa River PCB TMDL Environmental Sampling Report. U.S. Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Ecological Assessment Branch, Athens, GA. EPA 2003b. Coosa River PCB Water Sampling Investigation Quality Assurance Project Plan. U.S. Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Ecological Assessment Branch, Athens, GA. Rushneck, D.R., A. Beliveau, B. Fowler, C. Hamilton, D. Hoover, K. Kaye, M. Bery, T. Smith, W. Telliard, H. Roman, E. Ruder, L. Ryan. 2003. *Concentrations of dioxin-like PCB congeners in unweathered Aroclors by HRGC/HRMS using EPA Method 1668A*. Chemosphere. Volume 54, Issue 1, January 2004, pp. 79-87. Stamey, T. Unpublished data. United States Geological Survey Stream Gaging Program, 2003. # APPENDIX A IN SITU WATER QUALITY PARAMETERS ### Appendix A Station LDC1 # *In situ* Water Quality Data ## Coosa River Water Sampling Investigation September/October 2003 Rome, Georgia | | | | | , , | | | | | |-----------|----------|-------|----------|------|------|-------|------------------|-----------| | Date | Time | Temp | SpCond | DO | DO | Depth | рΗ | Turbidity | | mm/dd/yy | hh:mm:ss | С | uS/cm | mg/L | % | ft | | NTU | | | | | | | | | • | | | 9/23/2003 | 9:16:59 | 19.96 | 214.50 | 7.03 | 77.3 | 0.04 | 7.59 | 23.33 | | 9/23/2003 | 9:31:59 | 19.95 | 215.16 | 6.99 | /6.9 | Û.Û4 | 7.62 | 21.56 | | 9/23/2003 | 9:46:59 | 19.98 | 216.28 | 7.00 | 77.0 | 0.04 | 7.6 4 | 22.60 | | 9/23/2003 | 10:01:59 | 20.00 | 217.09 | 6.99 | 76.9 | 0.04 | 7.64 | 20.21 | | 9/23/2003 | 10:16:59 | 20.02 | 217.94 | 6.99 | 77.0 | 0.04 | 7.65 | 21.62 | | 9/23/2003 | 10:31:59 | 20.07 | 218.98 | 6.99 | 77.1 | 0.04 | . 7.65 | 20.15 | | 9/23/2003 | 10:46:59 | 20.15 | 219.86 | 7.01 | 77.3 | 0.04 | 7.66 | 20.89 | | 9/23/2003 | 11:02:00 | 20.23 | 220.70 | 7.03 | 77.7 | 0.04 | 7.66 | 19.60 | | 9/23/2003 | 11:16:59 | 20.28 | 221.45 | 7.08 | 78.3 | 0.04 | 7.67 | 21.07 | | 9/23/2003 | 11:31:59 | 20.41 | 221.96 | 7.11 | 78.8 | 0.04 | 7.68 | 19.60 | | 9/23/2003 | 11:46:59 | 20.54 | 222.31 | 7.06 | 78.5 | 0.04 | 7.68 | 20.34 | | 9/23/2003 | 12:01:59 | 20.60 | . 223.19 | 7.09 | 78.9 | 0.04 | 7.68 | 19.54 | | 9/23/2003 | 12:16:59 | 20.73 | 225.15 | 7.17 | 80.1 | 0.04 | 7.71 | 20.40 | | 9/23/2003 | 12:32:00 | 20.96 | 226.89 | 7.21 | 80.9 | 0.04 | 7.73 | 19.48 | | 9/23/2003 | 12:46:59 | 21.19 | 230.88 | 7.18 | 80.9 | 0.04 | 7.76 | 19.73 | | 9/23/2003 | 13:01:59 | 21.46 | 234.01 | 7.19 | 81.4 | 0.05 | 7.80 | 18.57 | | 9/23/2003 | 13:16:59 | 21.81 | 235.63 | 7.35 | 83.8 | 0.05 | 7.86 | 18.87 | | 9/23/2003 | 13:32:00 | 22.06 | 236.74 | 7.27 | 83.3 | 0.05 | 7.90 | 16.80 | | 9/23/2003 | 13:46:59 | 22.44 | 237.77 | 7.39 | 85.3 | 0.05 | 7.98 | 18.26 | | 9/23/2003 | 14:01:59 | 22.60 | 239.48 | 7.40 | 85.6 | 0.05 | 8.00 | 17.47 | | 9/23/2003 | 14:16:59 | 22.76 | 240.68 | 7.39 | 85.8 | 0.05 | 7.99 | 18.08 | | 9/23/2003 | 14:31:59 | 22.85 | 240.96 | 7.44 | 86.5 | 0.05 | 8.01 | 16.49 | | 9/23/2003 | 14:46:59 | 23.16 | 240.94 | 7.40 | 86.6 | 0.05 | 8.01 | 16.80 | | 9/23/2003 | 15:01:59 | 23.26 | 242.30 | 7.44 | 87.2 | 0.05 | 8.05 | 15.52 | | 9/23/2003 | 15:16:59 | 23.39 | 242.61 | 7.44 | 87.4 | 0.05 | 8.06 | 16.55 | | 9/23/2003 | 15:31:59 | 23.56 | 243.23 | 7.44 | 87.7 | 0.05 | 8.06 | 15.82 | | 9/23/2003 | 15:47:00 | 23.74 | 243.45 | 7.45 | 88.1 | 0.05 | 8.07 | 16.74 | |
9/23/2003 | 16:01:59 | 23.96 | 243.89 | 7.43 | 88.2 | 0.05 | 8.07 | 15.88 | | 9/23/2003 | 16:16:59 | 24.07 | 244.41 | 7.35 | 87.4 | 0.05 | 8.05 | 15.94 | | 9/23/2003 | 16:31:59 | 24.09 | 245.29 | 7.42 | 88.3 | 0.05 | 8.06 | 15.33 | | 9/23/2003 | 16:46:59 | 24.10 | 244.78 | 7.36 | 87.7 | 0.05 | 8.05 | 15.58 | | 9/23/2003 | 17:01:59 | 24.14 | 245.33 | 7.31 | 87.2 | 0.05 | 8.04 | 15.03 | | 9/23/2003 | 17:17:00 | 24.19 | 245.96 | 7.29 | 87.0 | 0.05 | 8.04 | 15.15 | | 9/23/2003 | 17:31:59 | 24.28 | 245.85 | 7.27 | 86.9 | 0.05 | 8.04 | 14.29 | | 9/23/2003 | 17:47:00 | 24.22 | 245.45 | 7.24 | 86.4 | 0.05 | 8.03 | 15.27 | | 9/23/2003 | | 24.26 | 246.16 | 7.18 | 85.7 | 0.05 | 8.02 | 13.99 | | 9/23/2003 | 18:16:59 | 24.25 | 246.16 | 7.11 | 84.9 | 0.05 | 8.02 | 14.11 | | 9/23/2003 | | 24.22 | 246.14 | 7.05 | 84.2 | 0.05 | 8.00 | 13.56 | | 9/23/2003 | | 24.12 | 245.97 | 7.01 | 83.5 | 0.05 | 7.99 | 13.87 | | 9/23/2003 | | 24.04 | 246.34 | 6.96 | 82.8 | 0.05 | 7.97 | 12.59 | | 9/23/2003 | | 23.88 | 246.27 | 6.94 | 82.3 | 0.05 | 7.96 | 13.44 | | 9/23/2003 | | 23.72 | 246.11 | 6.83 | 80.8 | 0.05 | 7.95 | 12.59 | | | | | | | | | | | ### Appendix A Station LDC1 # In situ Water Quality Data # Coosa River Water Sampling Investigation # September/October 2003 ### Rome, Georgia | Date
mm/dd/yy | Time
hh:mm:ss | Temp
C | SpCond
uS/cm | DO
mg/L | DO
% | Depth
ft | pН | Turbidity
NTU | |------------------|------------------|-----------|-----------------|------------|---------|-------------|------|------------------| | 9/23/2003 | 19:47:00 | 23.55 | 246.52 | 6.81 | 80.3 | 0.05 | 7.93 | 13.26 | | 9/23/2003 | 20:01:59 | 23.37 | 246.72 | 6.76 | 79.4 | 0.04 | 7.92 | 12.71 | | 9/23/2003 | 20:16:59 | 23.28 | 246.38 | 6.70 | 78.6 | 0.04 | 7.91 | 12.89 | Appendix A Station LDC2 In situ Water Quality Data Coosa River Water Sampling Investigation September/October 2003 Rome, Georgia | Date | Time | Temp | SpCond | DO | DO T | Depth | рН | Turbidity | |-----------|-----------------------|-------|--------|------|------|-------|------|-----------| | mm/dd/yy | hh:mm:ss | С | uS/cm | mg/L | % | ft | | NTU | | 0/24/2002 | 0.21.50 | 10.71 | 256.04 | F 25 | 57.4 | 0.00 | 7.50 | 5.07 | | 9/24/2003 | 9:31:59 | 18.71 | 256.04 | 5.35 | 57.4 | 0.00 | 7.53 | 5.87 | | 9/24/2003 | 9:46:59 | 18.71 | 256.29 | 5.36 | 57.5 | 0.00 | 7.53 | 5.87 | | 9/24/2003 | 10:02:00 | 18.73 | 256.36 | 5.34 | 57.2 | 0.00 | 7.54 | 5.63 | | 9/24/2003 | 10:16:59 | 18.74 | 256.71 | 5.37 | 57.6 | 0.00 | 7.54 | 5.57 | | 9/24/2003 | 10:32:00 | 18.79 | 257.00 | 5.39 | 57.9 | 0.00 | 7.54 | 5.69 | | 9/24/2003 | 10:46:59 | 18.81 | 257.13 | 5.41 | 58.2 | 0.00 | 7.54 | 5.51 | | 9/24/2003 | 11:01:59 | 18.84 | 257.44 | 5.43 | 58.4 | 0.00 | 7.54 | 5.44 | | 9/24/2003 | 11:17:00 | 18.88 | 257.44 | 5.49 | 59.0 | 0.00 | 7.54 | 5.26 | | 9/24/2003 | 11:31:59 | 18.93 | 257.61 | 5.46 | 58.8 | 0.00 | 7.54 | 5.08 | | 9/24/2003 | 11:46:59 | 19.00 | 257.72 | 5.45 | 58.8 | 0.00 | 7.54 | 4.96 | | 9/24/2003 | 12:02:00 | 19.07 | 257.72 | 5.54 | 59.8 | 0.00 | 7.55 | 4.59 | | 9/24/2003 | 12:17:00 | 19.16 | 257.78 | 5.55 | 60.0 | 0.01 | 7.55 | 4.65 | | 9/24/2003 | 12:31:59 | 19.28 | 258.22 | 5.59 | 60.7 | 0.01 | 7.55 | 4.53 | | 9/24/2003 | 12:46:59 | 19.48 | 258.32 | 5.65 | 61.5 | 0.01 | 7.55 | 4.28 | | 9/24/2003 | 13:02:00 | 19.57 | 258.80 | 5.72 | 62.4 | 0.01 | 7.55 | 4.10 | | 9/24/2003 | 13:16:59 | 19.69 | 258.89 | 5.85 | 64.0 | 0.01 | 7.55 | 4.16 | | 9/24/2003 | 13:31:59 | 19.73 | 259.34 | 5.81 | 63.6 | 0.01 | 7.56 | 3.98 | | 9/24/2003 | 13:46:59 | 19.83 | 259.43 | 5.90 | 64.7 | 0.01 | 7.57 | 3.92 | | 9/24/2003 | 14:02:00 | 19.90 | 259.99 | 5.92 | 65.1 | 0.01 | 7.57 | 3.92 | | 9/24/2003 | 14:16:59 | 20.00 | 260.09 | 5.98 | 65.8 | 0.01 | 7.58 | 3.92 | | 9/24/2003 | 14:31:59 | 20.06 | 260.40 | 6.03 | 66.4 | 0.01 | 7.58 | 3.67 | | 9/24/2003 | 14:46:59 | 20.15 | 260.73 | 6.07 | 67.0 | 0.01 | 7.59 | 3.74 | | 9/24/2003 | 15:02:00 | 20.26 | 261.00 | 6.09 | 67.3 | 0.01 | 7.60 | 3.74 | | 9/24/2003 | 15:17:00 | 20.39 | 261.00 | 6.23 | 69.1 | 0.01 | 7.60 | 3.49 | | 9/24/2003 | 15:31:59 | 20.51 | 260.99 | 6.21 | 69.0 | 0.01 | 7.61 | 3.31 | | 9/24/2003 | 15:46:59 | 20.57 | 261.23 | 6.25 | 69.5 | 0.01 | 7.61 | 3.37 | | 9/24/2003 | 16:02:00 | 20.65 | 261.78 | 6.25 | 69.7 | 0.01 | 7.62 | 3.37 | | 9/24/2003 | 16:16:59 | 20.75 | 261.97 | 6.29 | 70.2 | 0.01 | 7.62 | 3.31 | | 9/24/2003 | 16:31:59 | 20.91 | 261.75 | 6.35 | 71.2 | 0.01 | 7.63 | 3.43 | | 9/24/2003 | 16: 46 :59 | 20.92 | 261.97 | 6.32 | 70.9 | 0.01 | 7.63 | 3,06 | | 9/24/2003 | 17:01:59 | 21.01 | 262.05 | 6.37 | 71.6 | 0.01 | 7.63 | 3.19 | | 9/24/2003 | 17:16:59 | 21.09 | 262.04 | 6.36 | 71.5 | 0.01 | 7.64 | 3.00 | | 9/24/2003 | 17:31:59 | 21.16 | 262.27 | 6.44 | 72.5 | 0.01 | 7.64 | 2.88 | | 9/24/2003 | 17:47:00 | 21.22 | 262.21 | 6.43 | 72.4 | 0.01 | 7.64 | 3.00 | | 9/24/2003 | 18:02:00 | 21.26 | 262.17 | 6.43 | 72.5 | 0.01 | 7.64 | 2.88 | | 9/24/2003 | 18:16:59 | 21.28 | 262.37 | 6.41 | 72.3 | 0.01 | 7.65 | 2.76 | | 9/24/2003 | 18:31:59 | 21.32 | 262.53 | 6.37 | 72.0 | 0.01 | 7.65 | 2.88 | | 9/24/2003 | 18:46:59 | 21.35 | 262.48 | 6.36 | 71.9 | 0.01 | 7.65 | 2.58 | # Appendix A Station HLC1 In situ Water Quality Data Coosa River Water Sampling Investigation September/October 2003 Rome, Georgia | Date | Time | Temp | SpCond | DO | DO | Depth | рН Т | Turbidity | |------------------------|----------------------|----------------|------------------|--------------|---------------------------|--------------|----------------------------|------------------| | mm/dd/yy | hh:mm:ss | С | uS/cm | mg/L | % | ft | ₹. | NTU | | 0/25/2002 | 0.24.50 | 10.70 | . 212.44 | 7.16 | 76.0 | 0 15 | 7.41 | 0.47 | | 9/25/2003 | 8:31:59 | 18.78 | 212.44 | 7.16 | 76.8 | 0.15 | 7.41 | 9.47 | | 9/25/2003 | 8:46:59 | 18.75 | 211.24 | 7.18 | 77.1 | 0.15 | 7.42 | 9.05 | | 9/25/2003 | 9:01:59 | 18.74 | 210.88 | 7.21 | 77.3 | 0.15 | 7.43 | 9.53 | | 9/25/2003 | 9:16:59 | 18.72 | 210.51 | 7.28 | 78.1 | 0.15 | 7.44 | 8.80 | | 9/25/2003 | 9:32:00 | 18.72 | 210.11 | 7.35 | 78.8 | 0.15 | 7.44 | 9.05 | | 9/25/2003 | 9:46:59 | 18.71 | 210.33 | 7.41 | 79.5 | 0.15 | 7.44 | 8.19 | | 9/25/2003 | 10:02:00 | 18.76 | 209.17 | 7.50 | 80.5 | 0.15 | 7.46 | 8.92 | | 9/25/2003 | 10:17:00 | 18.81 | 208.76 | 7.60 | 81.6 | 0.15 | 7.47 | 8.80 | | 9/25/2003 | 10:31:59 | 18.90 | 208.19 | 7.73 | 83.2 | 0.15 | 7.48 | 9.59 | | 9/25/2003 | 10:46:59 | 19.03 | 207.09 | 7.87 | 84.9 | 0.15 | 7.49 | 9.84 | | 9/25/2003 | 11:02:00 | 19.21 | 206.52 | 7.97 | 86.3 | 0.15 | 7.51 | 10.45 | | 9/25/2003 | 11:16:59 | 19.36 | 207.20 | 8.11 | 88.1 | 0.15 | 7.51 | 11.06 | | 9/25/2003 | 11:32:00 | 19.52 | 207.18 | 8.20 | 89.4 | 0.15 | 7.52 | 11.43 | | 9/25/2003 | 11:46:59 | 19.72 | 206.01 | 8.36 | 91.4 | 0.15 | 7.55 | 11.55 | | 9/25/2003 | 12:01:59 | 19.85 | 207.25 | 8.40 | 92.2 | . 0.15 | 7.54 | 11.24 | | 9/25/2003 | 12:16:59 | 19.95 | 207.99 | 8.41 | 92.5 | 0.15 | 7.54 | 11.43 | | 9/25/2003 | 12:31:59 | 20.16 | 207.88 | 8.51 | 94.0 | 0.15 | 7.55 | 10.88 | | 9/25/2003 | 12:46:59 | 20.30 | 208.77 | 8.54 | 94.5 | 0.15 | 7.55 | 10.94 | | 9/25/2003 | 13:02:00 | 20.33 | 210.12 | 8.54 | 94 .6 - | 0.14 | 7.54 | 10.57 | | 9/25/2003 | 13:16:59 | 20.36 | 211.06 | 8.46 | 93.8 | 0.14 | 7.53 | 10.82
10.08 | | 9/25/2003 | 13:31:59 | 20.38 | 212.30 | 8.39
8.38 | 93.0
93.2 | 0.14 | 7.52
7.54 | 9.29 | | 9/25/2003 | 13:46:59 | 20.52 | 211.74 | | | 0.14 | 7.5 4 .
7.53 | 8.92 | | 9/25/2003 | | 20.59 | 213.83 | 8.43 | 93.8 | 0.14 | 7.53
7.51 | 8.37 | | 9/25/2003 | | 20.73 | 215.03 | 8.48
8.47 | 94.7 | 0.13 | 7.51
7.49 | 8.31 | | 9/25/2003 | 14:31:59 | 20.89 | 217.71 | 8.47
8.45 | 94.9
94.7 | 0.13
0.13 | 7.49
7.46 | 8.86 | | 9/25/2003 | 14:47:00 | 20.94
21.00 | 219.23
220.09 | 8.44 | 94.7
94.8 | 0.13 | 7.46
7.43 | 8.07 | | 9/25/2003 | 15:01:59 | 21.00 | 220.09 | 8.51 | 9 4 .8
95.7 | 0.13 | 7.43
7.46 | 7.70 | | 9/25/2003
9/25/2003 | 15:16:59
15:31:59 | 21.14 | 219.10 | 8.55 | 95.7
96.4 | 0.13 | 7.40 | 8.01 | | 9/25/2003 | 15:47:00 | 21.21 | 219.42 | 8.45 | 95.3 | 0.13 | 7.30
7.46 | 8.80 | | 9/25/2003 | 16:01:59 | 21.22 | 215.42 | 8.45 | 95.5
95.6 | 0.13 | 7.51 | 8.50 | | 9/25/2003 | 16:16:59 | 21.43 | 215.52 | 8.42 | 95.3 | 0.13 | 7.31
7.49 | 7.21 | | 9/25/2003 | 16:31:59 | 21.43 | 217.30 | 8.45 | 95\5
95\5 | 0.13 | 7. 13
7.52 | 7.6 4 | | 9/25/2003 | 16:47:00 | 21.33 | 217.30 | 8.37 | 94.8 | 0.13 | 7.50 | 7.58 | | 9/25/2003 | 17:01:59 | 21.47 | 216.23 | 8.39 | 94.8 | 0.13 | 7.50
7.50 | 8.19 | | 9/25/2003 | 17:16:59 | 21.43 | 210.78 | 8.20 | 92.8 | 0.13 | 7.30
7.48 | 6.79 | | 9/25/2003 | 17:32:00 | 21.43 | 221.91 | 8.22 | 92.6 | 0.13 | 7.45 | 7.34 | | 9/25/2003 | 17:46:59 | 21.42 | 217.89 | 8.03 | 90.9 | 0.13 | 7.46 | 7.03 | | 9/25/2003 | 18:01:59 | 20.93 | 228.97 | 7.86 | 88.1 | 0.14 | 7.46 | 6.97 | | 9/25/2003 | 18:16:59 | 21.13 | 219.28 | 7.83 | 88.1 | 0.14 | 7.30
7.41 | 7.15 | | 9/25/2003 | 18:31:59 | 21.15 | 219.28 | 7.61 | 85.7 | 0.15 | 7.40 | 6.42 | | 9/25/2003 | 18:46:59 | 21.13 | 218.74 | 7.51 | 84.7 | 0.13 | 7.40 | 6.48 | | 2/22/2003 | 10.70.33 | 21.20 | £10.7 T | 7.51 | 01.7 | 0.11 | , . 10 | J. 15 | # Appendix A Station ER # In situ Water Quality Data # Coosa River Water Sampling Investigation September/October 2003 Rome, Georgia | Date | Time | Temp | SpCond | DO | DQ | Depth | рН | Turbidity | |------------|----------|-------|----------|------|--------|-------|--------|-----------| | mm/dd/yy | hh:mm:ss | C | uS/cm | mg/L | % | ft | | NTU | | | | | | | | | | | | 10/21/2003 | 10:31:59 | 17.70 | 154.32 | 9.17 | 96.3 | 2.53 | 7.63 | 24.91 | | 10/21/2003 | 10:46:59 | 17.74 | 153.03 | 9.14 | 96.1 | 2.44 | 7.66 | 25.16 | | 10/21/2003 | 11:01:59 | 17.80 | 151.32 | 9.12 | _ 95.9 | 2.63 | 7.63 | 25.89 | | 10/21/2003 | 11:16:59 | 17.86 | 149.34 | 9.10 | 95.8 | 2.48 | 7.65 | 29.13 | | 10/21/2003 | 11:31:59 | 17.93 | 147.03 | 9.07 | 95.7 | 2.39 | 7.65 | 26.87 | | 10/21/2003 | 11:46:59 | 17.99
| 144.37 | 9.04 | 95.5 | 2.48 | 7.64 | 24.67 | | 10/21/2003 | 12:01:59 | 18.08 | 141.61 | 9.02 | 95.4 | 2.23 | 7.59 | 22.84 | | 10/21/2003 | 12:17:00 | 18.18 | 138.22 | 8.98 | 95.3 | 2.58 | 7.60 | 24.00 | | 10/21/2003 | 12:31:59 | 18.28 | 134.72 | 8.95 | 95.1 | 2.54 | 7.59 | 25.77 | | 10/21/2003 | 12:47:00 | 18.41 | 131.02 | 8.91 | 95.0 | 2.40 | 7.58 | 21.31 | | 10/21/2003 | 13:01:59 | 18.54 | 127.18 | 8.89 | 95.0 | 2.51 | 7.56 | 21.80 | | 10/21/2003 | 13:16:59 | 18.67 | . 123.21 | 8.83 | 94.6 | 2.57 | . 7.55 | 19.85 | | 10/21/2003 | 13:31:59 | 18.81 | 119.56 | 8.78 | 94.3 | 2.53 | 7.53 | 21.98 | | 10/21/2003 | 13:46:59 | 18.95 | 115.75 | 8.74 | 94.1 | 2.47 | 7.51 | 20.70 | | 10/21/2003 | 14:01:59 | 19.07 | 112.01 | 8.69 | 93.9 | 2.34 | 7.49 | 20.46 | | 10/21/2003 | 14:17:00 | 19.19 | 108.84 | 8.68 | 93.9 | 2.50 | 7.47 | 18.75 | | 10/21/2003 | 14:31:59 | 19.32 | 105.61 | 8.65 | 93.8 | 2.55 | 7.46 | 19.12 | | 10/21/2003 | 14:46:59 | 19.44 | 102.56 | 8.60 | 93.6 | 2.39 | 7.45 | 21.37 | | 10/21/2003 | 15:02:00 | 19.54 | 99.85 | 8.57 | 93.5 | 2.62 | 7.44 | 19.91 | | 10/21/2003 | 15:16:59 | 19.63 | 97.13 | 8.56 | 93.5 | 2.52 | 7.43 | 15.94 | | 10/21/2003 | 15:31:59 | 19.72 | 94.86 | 8.55 | 93.5 | 2.57 | 7.42 | 17.35 | | 10/21/2003 | 15:46:59 | 19.82 | 92.90 | 8.55 | 93.7 | 2.59 | 7.41 | 15.27 | | 10/21/2003 | 16:01:59 | 19.90 | 90.99 | 8.55 | 93.8 | 2.60 | 7.40 | 15.39 | | 10/21/2003 | 16:16:59 | 19.97 | 89.36 | 8.55 | 94.0 | 2.62 | 7.41 | 15.21 | | 10/21/2003 | 16:31:59 | 20.03 | 87.93 | 8.56 | 94.2 | 2.76 | 7.40 | 14.23 | | 10/21/2003 | 16:47:00 | 20.08 | 87.22 | 8.57 | 94.4 | 2.77 | 7.40 | 14.60 | | 10/21/2003 | 17:01:59 | 20.13 | 85.56 | 8.60 | 94.9 | 2.70 | 7.40 | 14.42 | | 10/21/2003 | 17:17:00 | 20.17 | 84.66 | 8.60 | 94.9 | 2.65 | 7.40 | 15.09 | | 10/21/2003 | 17:31:59 | 20.20 | 83.83 | 8.63 | 95.3 | 2.68 | 7.41 | 20.03 | | 10/21/2003 | 17:46:59 | 20.24 | 83.16 | 8.63 | 95.3 | 2.66 | 7.41 | 12.65 | | 10/21/2003 | 18:01:59 | 20.26 | 82.58 | 8.66 | 95.7 | 2.61 | 7.41 | 10.63 | | 10/21/2003 | 18:16:59 | 20.27 | 82.13 | 8.66 | 95.8 | 2.69 | 7.42 | 10.94 | | 10/21/2003 | 18:31:59 | 20.28 | 81.72 | 8.67 | 95.9 | 2.68 | 7.42 | 8.68 | | 10/21/2003 | 18:46:59 | 20.30 | 81.33 | 8.69 | 96.1 | 2.73 | 7.42 | 8.13 | | 10/21/2003 | 19:02:00 | 20.31 | `81.10 | 8.69 | 96.2 | 2.75 | 7.42 | 9.66 | | 10/21/2003 | 19:16:59 | 20.31 | 80.87 | 8.71 | 96.4 | 2.75 | 7.43 | 7.95 | | 10/21/2003 | 19:31:59 | 20.31 | 80.70 | 8.72 | 96.5 | 2.78 | 7.44 | 6.79 | | 10/21/2003 | 19:47:00 | 20.31 | 80.62 | 8.72 | 96.5 | 2.75 | 7.44 | 7.76 | | 10/21/2003 | 20:01:59 | 20.30 | 80.54 | 8.75 | 96.8 | 2.76 | 7.44 | 6.60 | | 10/21/2003 | 20:16:59 | 20.29 | 80.52 | 8.74 | 96.7 | 2.79 | 7.45 | 6.60 | | 10/21/2003 | 20:32:00 | 20.28 | 80.51 | 8.74 | 96.7 | 2.68 | 7.44 | 5.26 | | | | | | | | | | | # Appendix A Station ER In situ Water Quality Data Coosa River Water Sampling Investigation September/October 2003 Rome, Georgia | | | | | o, 000. g.u | | | | | |------------|-----------------------|-------|--------|-------------|--------|-------|--------|-----------| | Date | Time | Temp | SpCond | DO | DO | Depth | Ρq | Turbidity | | mm/dd/yy | hh:mm:ss | С | uS/cm | mg/L | % | ft | | NTU | | | | | | | | | | | | 10/22/2003 | 9:17:00 | 19.49 | 92.32 | 8.40 | 91.5 | 2.39 | 7.37 | 27.84 | | 10/22/2003 | 9:31:59 | 19.44 | 95.05 | 8.36 | 91.0 | 2.23 | 7.40 | 25.28 | | 10/22/2003 | 9:47:00 | 19.39 | 98.42 | 8.36 | 90.8 | 1.90 | 7.37 | 24.18 | | 10/22/2003 | 10:01:59 | 19.35 | 102.22 | 8.38 | 91.0 | 2.11 | 7.40 | 25.46 | | 10/22/2003 | 10:16:59 | 19.31 | 105.94 | 8.40 | 91.1 | 2.27 | 7.44 | 25.65 | | 10/22/2003 | 10:31:59 | 19.29 | 109.37 | 8.39 | 91.0 | 2.26 | 7.45 | 24.91 | | 10/22/2003 | 10:46:59 | 19.26 | 112.20 | 8.42 | 91.3 | 2.20 | 7.45 | 21.62 | | 10/22/2003 | 11:02:00 | 19.25 | 114.09 | 8.40 | 91.0 | 2.33 | 7.45 | 21.98 | | 10/22/2003 | 11:16:59 | 19.24 | 115.23 | 8.40 | 91.0 | 2.13 | 7.45 | 19.54 | | 10/22/2003 | 11:32:00 | 19.26 | 115.77 | 8.39 | 90.9 | 2.41 | 7.46 | 20.15 | | 10/22/2003 | 11:46:59 | 19.29 | 115.21 | 8.39 | 91.0 | 2.29 | 7.45 | 19.67 | | 10/22/2003 | 12:01:59 | 19.33 | 114.27 | 8.38 | 90.9 | 2.35 | 7.43 | 21.25 | | 10/22/2003 | 12:16:59 | 19.39 | 112.68 | 8.33 | 90.5 | 2.50 | 7.40 | 18.32 | | 10/22/2003 | 12:31:59 | 19.46 | 110.62 | 8.29 | 90.3 | 2.35 | . 7.37 | 16.55 | | 10/22/2003 | 12:47:00 | 19.53 | 108.18 | 8.28 | 90.3 | 2.62 | 7.31 | 16.98 | | 10/22/2003 | 13:01:59 | 19.61 | 105.56 | 8.23 | 89.8 | 2.60 | 7.34 | 17.90 | | 10/22/2003 | 13:16:59 | 19.68 | 102.82 | 8.20 | 89.6 | 2.48 | 7.37 | 15.64 | | 10/22/2003 | 13:31:59 | 19.77 | 99.99 | 8.16 | 89.4 | 2.59 | 7.36 | 18.87 | | 10/22/2003 | 13:47:00 | 19.84 | 97.21 | 8.06 | 88.4 | 2.89 | 7.33 | 18.08 | | 10/22/2003 | 14:01:59 | 19.91 | 94.75 | 8.03 | 88.2 | 2.87 | 7.22 | 13.50 | | 10/22/2003 | 14:16:59 | 19.99 | 92.30 | 8.02 | 88.2 | 2.84 | 7.32 | 13.81 | | 10/22/2003 | 14:31:59 | 20.06 | 90.10 | 8.03 | 88.4 | 2.82 | 7.24 | 12.71 | | 10/22/2003 | 14:46:59 | 20.13 | 88.16 | 8.01 | 88.3 | 2.88 | 7.23 | 13.62 | | 10/22/2003 | 15:02:00 | 20.17 | 86.45 | 8.02 | 88.5 | 2.73 | 7.22 | 11.91 | | 10/22/2003 | 15:16:59 | 20.22 | 84.93 | 8.01 | . 88.5 | 2.74 | 7.24 | 9.29 | | 10/22/2003 | 15:32:00 | 20.27 | 83.52 | 8.04 | 88.9 | 2.77 | 7.30 | 11.67 | | 10/22/2003 | 15:46:59 | 20.31 | 82.44 | 8.03 | 88.9 | 2.82 | 7.30 | 9.11 | | 10/22/2003 | 16:01:59 | 20.35 | 81.41 | 8.04 | 89.1 | 2.85 | 7.30 | 9.84 | | 10/22/2003 | 16:16:59 | 20.37 | 80.63 | 8.08 | 89.5 | 2.75 | 7.30 | 7.70 | | 10/22/2003 | 16:31:59 | 20.39 | 79.88 | 8.09 | 89.6 | 2.92 | 7.30 | 7.76 | | 10/22/2003 | 16:47:00 | 20.41 | 79.39 | 8.11 | 89.9 | 2.95 | 7.32 | 7.89 | | 10/22/2003 | 17:01:59 | 20.43 | 78.91 | 8.15 | 90.5 | 3.04 | 7.32 | 7.89 | | 10/22/2003 | 17:17:00 | 20.43 | 78.52 | 8.19 | 90.8 | 3.01 | 7.33 | 7.52 | | 10/22/2003 | 17:31:59 | 20.43 | 78.25 | 8.20 | 91.0 | 3.04 | 7.33 | 6.18 | | 10/22/2003 | 17:46:59 | 20.42 | 78.02 | 8.22 | 91.2 | 2.98 | 7.34 | 5.63 | | 10/22/2003 | 18:01:59 ⁻ | 20.41 | 77.86 | 8.26 | 91.6 | 3.09 | 7.34 | 5.63 | | 10/22/2003 | 18:16:59 | 20.41 | 77.75 | 8.28 | 91.8 | 3.04 | 7.36 | 5.14 | | 10/22/2003 | 18:31:59 | 21.25 | 40.78 | 8.17 | 92.0 | 0.17 | 8.20 | -6.46 | | 10/22/2003 | 18:46:59 | 21.13 | 40.95 | 8.18 | 91.9 | 0.17 | 8.17 | -6.52 | | 10/22/2003 | 19:02:00 | 20.74 | 41.19 | 8.25 | 92.1 | 0.17 | 8.09 | -6.21 | | 10/22/2003 | 19:16:59 | 20.52 | 41.15 | 8.23 | 91.5 | 0.17 | 8.09 | -6.52 | | 10/22/2003 | 19:31:59 | 18.80 | 0.77 | 9.06 | 97.3 | 0.18 | 7.22 | 25.95 | | | | | | | | | | | ### Appendix A Station ER # In situ Water Quality Data # Coosa River Water Sampling Investigation # September/October 2003 Rome, Georgia | Date
.mm/dd/yy | Time
hh:mm:ss | Temp
C | SpCond uS/cm | DO
mg/L | DO
% | Depth
ft | рН | Turbidity
NTU | |-------------------|------------------|-----------|--------------|------------|---------|-------------|------|------------------| | 10/22/2003 | 19:46:59 | 20.52 | 0.72 | 8.62 | 95.7 | 0.17 | 7.41 | 256.12 | | 10/22/2003 | 20:01:59 | 20.79 | 0.72 | 8.57 | 95.7 | 0.17 | 1.4/ | -5.73 | | 10/22/2003 | 20:16:59 | 21.08 | 0.71 | 8.51 | 95.6 | 0.17 | 7.49 | -4.50 | | 10/22/2003 | 20:31:59 | 21.33 | 0.72 | 8.47 | 95.6 | 0.18 | 7.44 | - 5.79 | | 10/22/2003 | 20:47:00 | 21.55 | 0.73 | 8.41 | 95.4 | 0.18 | 7.49 | -4.81 | | 10/22/2003 | 21:01:59 | 21.74 | 0.73 | 8.39 | 95.4 | 0.18 | 7.49 | -5.73 | | 10/22/2003 | 21:17:00 | 21.91 | 0.72 | 8.35 | 95.3 | 0.18 | 7.49 | -4.81 | # Appendix A Station OR In situ Water Quality Data Coosa River Water Sampling Investigation September/October 2003 Rome, Georgia | | | | 1.011 | ic, acoigia | | | | | |--------------------------|----------------------|----------------|---------|--------------|--------------|--------------|--------------|----------------| | Date | Time | Temp | SpCond | DO | DO | Depth | рН | Turbidity | | mm/dd/yy | hh:mm:ss | С., | uS/cm | mg/L | % | ft | | NTU | | 10/23/2003 | 10:16:59 | 17.75 | 88.29 | 8.16 | 85.7 | 5.14 | 7.87 | 12.46 | | 10/23/2003 | 10:31:59 | 17.76 | 88.38 | 8.12 | 85.4 | 5.16 | 7.35 | | | 10/23/2003 | 10:31:59 | 17.77 | 88.34 | 8.08 | 85.0 | 5.22 | 7.33
7.27 | 13.20 | | 10/23/2003 | 11:01:59 | 17.77 | 88.35 | 8.05 | 84.7 | 5.22 | 7.27 | 15.09 | | 10/23/2003 | 11:16:59 | 17.79 | 88.39 | 8.04 | 84.6 | | | 13.26 | | | | | | | | 5.26 | 7.24 | 12.83 | | 10/23/2003 | 11:31:59
11:46:59 | 17.83
17.83 | 88.35 | 8.02
8.01 | 84.5
84.3 | 5.37 | 7.23 | 12.22 | | 10/23/2003
10/23/2003 | 12:02:00 | 17.85 | 88.44 | | 84.3 | 5.12
5.00 | 7.23 | 14.36 | | | | 17.85
17.85 | 88.36 | 8.00 | 84.3 | 5.00
5.25 | 7.23 | 15.88 | | 10/23/2003 | 12:16:59 | 17.85 | 88.47 | 8.01 | | | 7.23 | 14.05 | | 10/23/2003 | 12:31:59 | 17.88 | 88.45 | 8.01 | 84.4 | 5.25 | 7.23 | 14.66 | | 10/23/2003 | 12:46:59 | | 88.48 | 8.01 | 84.4
84.5 | 5.26 | 7.23 | 13.44 | | 10/23/2003 | 13:01:59 | 17.89 | 88.61 | 8.01 | 84.5 | 5.26 | 7.24 | 13.50 | | 10/23/2003 | 13:16:59 | 17.92 | 88.69 | 8.02 | 84.6 | 5.26 | 7.24 | 16.13 | | 10/23/2003 | 13:31:59 | 17.93 | 88.80 | 8.03 | 84.7 | 5.32 | 7.24 | 13.75 | | 10/23/2003 | 13:46:59 | 17.96 | 88.89 | 8.04 | 84.9 | 5.31 | 7.24 | 15.03 | | 10/23/2003 | 14:01:59 | 17.96 | 89.11 | 8.05 | 85.0 | 5.12 | 7.25 | 15.64 | | 10/23/2003 | 14:17:00 | 17.98 | 89.27 | 8.05 | 85.0 | 5.25 | 7.25 | 15.76 | | 10/23/2003 | 14:31:59 | 17.97 | 89.44 | 8.06 | 85.1 | 5.31 | 7.25 | 18.93 | | 10/23/2003 | 14:46:59 | 17.98 | 89.65 | 8.07 | 85.2 | 5.28 | 7.26 | 16.92 | | 10/23/2003 | 15:01:59 | 17.98 | 89.80 | 8.08 | 85.3 | 5.26 | 7.25 | 15.82 | | 10/23/2003 | 15:17:00 | 18.01 | . 89.94 | 8.09 | 85.4 | 5.26 | 7.26 | 16.06 | | 10/23/2003 | 15:31:59 | 18.01 | 90.24 | 8.10 | 85.6 | 5.22 | 7.26 | 18.69 | | 10/23/2003 | 15:46:59 | 18.03 | 90.43 | 8.11 | 85.7 | 5.24 | 7.26 | 17.77 | | 10/23/2003 | 16:01:59 | 18.04 | 90.66 | 8.12 | 85.9 | 5.20 | 7.27 | 17.10 | | 10/23/2003 | 16:16:59 | 18.06 | 90.89 | 8.13 | 86.0 | 5.33 | 7.27 | 17.16 | | 10/23/2003 | 16:31:59 | 18.08 | 91.12 | 8.15 | 86.2 |
5.12 | 7.27 | 17.35 | | 10/23/2003 | 16:46:59 | 18.09 | 91.24 | 8.15 | 86.2 | 5.11. | 7.28 | 17.71 | | 10/23/2003 | 17:01:59 | 18.10 | 91.56 | 8.16 | 86.4 | 5.13 | 7.28 | 16.43 | | 10/23/2003 | 17:16:59 | 18.10 | 91.75 | 8.17 | 86.5 | 5.27 | 7.28 | 18.14 | | 10/23/2003 | 17:32:00 | 18.11 | 91.84 | 8.18 | 86.6 | 5.25 | 7.28 | 18.02
18.26 | | 10/23/2003 | 17:46:59 | 18.12 | 92.13 | 8.19 | 86.7 | 5.25 | 7.29 | | | 10/23/2003 | 18:01:59 | 18.12
18.12 | 92.21 | 8.18 | 86.7 | 5.22 | 7.29 | 17.53 | | 10/23/2003 | 18:16:59 | | 92.35 | 8.18 | 86.7 | 5.17 | 7.29 | 18.44 | | 10/23/2003 | 18:31:59 | 18.12 | 92.46 | 8.19 | 86.7 | 5.34 | 7.29 | 17.53 | | 10/23/2003 | 18:46:59 | 18.12 | 92.59 | 8.18 | 86.7 | 5.23 | 7.29 | 18.38 | | 10/23/2003 | 19:01:59 | 18.11 | 92.66 | 8.18 | 86.6 | 5.26 | 7.29 | 18.93 | | 10/23/2003 | 19:16:59 | 18.10 | 92.69 | 8.18 | 86.6 | 5.16 | 7.29 | 21.37 | | 10/23/2003 | 19:31:59 | 18.10 | 92.91 | 8.18 | 86.5 | 5.25 | 7.29 | 17.53 | | 10/23/2003 | 19:47:00 | 18.10 | 93.14 | 8.17 | 86.5 | 5.24 | 7.29 | 18.20 | | 10/23/2003 | 20:01:59 | 18.09 | 93.15 | 8.17 | 86.4 | 5.37 | 7.29 | 18.75 | | 10/23/2003 | 20:16:59 | 18.09 | 93.26 | 8.16 | 86.4 | 5.25 | 7.29 | 18.63 | | 10/23/2003 | 20:31:59 | 18.08 | 93.07 | 8.16 | 86.4 | 5.23 | 7.29 | 18.99 | ### Appendix A Stat<u>i</u>on OR # In situ Water Quality Data # Coosa River Water Sampling Investigation # September/October 2003 # Rome, Georgia | Date
mm/dd/yy | Time
hh:mm:ss | Temp
C | SpCond
uS/cm | DO
mg/L | DO
% | Depth
ft | pH
·. | Turbidity
NTU | |------------------|------------------|-----------|-----------------|------------|---------|-------------|----------|------------------| | 10/23/2003 | 20:47:00 | 18.07 | 93.27 | 8.15 | 86.3 | 5.25 | 7.28 | 19.60 | | 10/23/2003 | 21:01:59 | 18.05 | 93.25 | 8.15 | 86.2 | 5.24 | 7.28 | 20.64 | | 10/23/2003 | 21:16:59 | 18.04 | 93.07 | 8.14 | 86.1 | 5.21 | 7.28 | 20.21 | ### Appendix A Station CR # In situ Water Quality Data ### Coosa River Water Sampling Investigation September/October 2003 ## Rome Georgia | • | | | | | | | | | |--------------------------|----------------------|----------------|----------------|--------------|--------------|--------------|--------------|----------------| | Date | Time | Temp | SpCond | DO | DO | Depth | рН | Turbidity | | mm/dd/yy | hh:mm:ss | С | uS/cm | mg/L | % | ft | | NTU | | 10/24/2003 | 9:16:59 | 18.50 | 99.17 | 7.9 | 84.3 | 4.32 | 7.33 | 21.01 | | 10/24/2003 | 9:31:59 | 18.49 | 96.92 | 7.86 | 83.9 | 4.44 | 7.20 | 22.17 | | 10/24/2003 | 9:46:59 | 18.47 | 94.31 | 7.83 | 83.5 | 4.57 | 7.16 | 20.21 | | 10/24/2003 | 10:02:00 | 18.45 | 91.68 | 7.78 | 83.0 | 4.25 | 7.12 | 18.81 | | 10/24/2003 | 10:16:59 | 18.51 | 89.49 | 7.74 | 82.6 | 4.42 | 7.10 | 19.42 | | 10/24/2003 | 10:31:59 | 18.53 | 87.64 | 7.71 | 82.3 | 4.41 | 7.08 | 18.32 | | 10/24/2003 | 10:46:59 | 18.55 | 85.80 | 7.69 | 82.2 | 4.58 | 7.08 | 18.63 | | 10/24/2003 | 11:01:59 | 18.61 | 84.37 | 7.67 | 82.0 | 4.49 | 7.06 | 16.92 | | 10/24/2003 | 11:16:59 | 18.58 | 83.35 | 7.67 | 82.0 | 4.55 | 7.05 | 17.96 | | 10/24/2003 | 11:31:59 | 18.63 | 82.45 | 7.66 | 82.0 | 4.43 | 7.05 | 15.82 | | 10/24/2003 | 11:46:59 | 18.64 | 81.80 | 7.63 | 81.6 | 4.54 | 7.05 | 16.13 | | 10/24/2003 | 12:02:00 | 18.55 | 82.01 | 7.7 | 82.3 | 4.55 | 7.05 | 16.00 | | 10/24/2003 | 12:16:59 | 18.64 | 81.30 | 7.68 | 82.2 | 4.4 | 7.05 | 15.09 | | 10/24/2003 | 12:31:59 | 18.64 | 81.24 | 7.71 | 82.5 | 4.39 | 7.06 | 13.50 | | 10/24/2003 | 12:46:59 | 18.68 | 80.98 | 7.72 | 82.6 | 4.48 | 7.06 | 13.81 | | 10/24/2003 | 13:01:59 | 18.68 | 81.09 | 7.74 | 82.9 | 4.47 | 7.06 | 14.05 | | 10/24/2003 | 13:16:59 | 18.73 | 80.93 | 7.75 | 83.1 | 4.35 | 7.06 | 12.65 | | 10/24/2003 | 13:31:59 | 18.72 | 81.35 | | 83.3 | 4.47 | 7.07 | 15.76 | | 10/24/2003 | 13:46:59 | 18.64 | 82.26 | 7.83 | 83.8 | 4.54 | 7.08 | 12.22 | | 10/24/2003 | 14:01:59 | 18.74 | 81.96 | 7.82 | 83.9 | 4.5 | 7.08 | 12.59 | | 10/24/2003 | 14:17:00 | 18.75 | 82.09 | 7.85 | 84.2 | 4.36 | 7.07 | 11.73 | | 10/24/2003 | 14:31:59 | 18.78 | 82.29 | 7.86 | 84.4 | 4.58 | 7.08 | 13.44 | | 10/24/2003 | 14:47:00 | 18.89 | 81.73 | 7.85 | 84.5 | 4.55 | 7.09 | 19.24 | | 10/24/2003 | 15:01:59 | 18.87 | 82.30 | 7.88 | 84.8 | 4.58 | 7.10 | 12.77 | | 10/24/2003 | 15:16:59 | 18.82 | 82.95 | 7.92 | 85.1 | 4.46 | 7.10 | 12.71 | | 10/24/2003 | 15:31:59 | 18.97 | 82.26 | 7.92 | 85.3 | 4.54 | 7.13 | 10.57 | | 10/24/2003 | 15:46:59 | 18.88 | 83.04 | 7.96 | 85.6 | 4.65 | 7.14 | 12.40 | | 10/24/2003 | 16:01:59 | 18.86 | 83.47 | 7.97 | 85.7 | 4.6 | 7.14 | 11.24 | | 10/24/2003 | 16:16:59 | 18.90 | 83.44 | 7.97 | 85.8 | 4.27 | 7.15 | 13.56 | | 10/24/2003 | 16:31:59 | 18.73 | 84.78 | 8.03 | 86.1 | 4.19 | 7.16 | 12.10 | | 10/24/2003 | 16:46:59 | 18.79 | 84.66 | 8.03 | 86.2 | 4.15 | 7.16 | 10.82 | | 10/24/2003 | 17:02:00 | 18.89 | 84.11 | 8.03 | 86.3 | 4.33 | 7.17 | 13.20 | | 10/24/2003 | 17:16:59 | 18.85 | 84.50 | 8.04 | 86.5 | 4.31 | 7.17 | 11.73 | | 10/24/2003 | 17:31:59 | 18.76 | 85.17 | 8.07 | 86.6 | 4.25 | 7.18 | 11.24 | | 10/24/2003 | 17:46:59 | 18.81 | 84.97 | 8.08 | 86.8 | 4.21 | 7.19 | 11.73 | | 10/24/2003 | 18:01:59 | 18.70 | 85.73 | 8.11 | 86.9 | 4.47 | 7.19 | 11.36 | | 10/24/2003 | 18:16:59 | 18.72 | 85.66
96.06 | 8.11 | 87.0 | 4.34 | 7.19 | 11.49 | | 10/24/2003 | 18:31:59 | 18.70 | 86.06 | 8.13 | 87.1 | 4.31 | 7.20 | 11.06 | | 10/24/2003
10/24/2003 | 18:46:59
19:01:59 | 18.73
18.71 | 85.97
86.26 | 8.11
8.13 | 87.0
87.2 | 4.15
4.38 | 7.20
7.21 | 10.57
11.18 | | 10/24/2003 | 19:01:59 | 18.65 | 86.78 | 8.13
8.15 | 87.2
87.2 | 4.38
4.37 | 7.21 | 10.27 | | 10/24/2003 | 19:17:00 | 18.59 | 87.26 | 8.16 | 87.2
87.2 | 4.37 | 7.21 | 10.27 | | 10/2 1/2003 | 10.01.00 | 10,55 | 07.20 | 0.10 | 07.2 | τ | 7,2,1 | | | | | | | | | | | | # Appendix A Station CR In situ Water Quality Data Coosa River Water Sampling Investigation September/October 2003 Rome Georgia | Date
mm/dd/yy | Time
hh:mm:ss | Temp
C | SpCond
uS/cm | DO
mg/L | DO
% | Depth ''
ft | рН | Turbidity
NTU | |------------------|------------------|-----------|-----------------|------------|---------|----------------|--------|------------------| | 10/24/2003 | 19:46:59 | 18.62 | 87.34 | 8.16 | 87.3 | 4.36 | · 7.22 | 11.18 | | 10/24/2003 | 20:01:59 | 18.54 | 87.93 | 8.16 | 87.2 | 4.41 | 7.22 | 12.34 | | 10/24/2003 | 20:17:00 | 18.67 | 87.65 | 8.16 | 87.4 | 4.33 | 7.22 | 10.08 | | 10/24/2003 | 20:31:59 | 18.61 | 88.14 | 8.17 | 87.4 | 4.37 | 7.22 | 10.14 | | 10/24/2003 | 20:46:59 | 18.55 | 88.70 | 8.17 | 87.3 | 4:39 | 7.23 | 10.51 | | 10/24/2003 | 21:01:59 | 18.58 | 88.84 | 8.16 | 87.3 | 4.4 | 7.23 | 10.82 | | 10/24/2003 | 21:16:59 | 18.50 | 89.56 | 8.17 | 87.2 | 4.38 | 7.23 | 10.14 | # APPENDIX B PCB CONGENER, HOMOLOGUE AND AROCLOR RESULTS IIS - ross florings standand - 10 nous poor soft now now fing -- and y bour -0 圍 (5 h) SAN. 8847-LEZ (406) tigh rough man you stude men report - 10 bregge 2 meren - wood 0 .45 never - technology 1 morrow did to probang in to las. + Johns Joh 1000 up frag Di 124 Aceduque alosm